
Project Proposal for AMSC 663, fall 2008                           Minghao Wu 

 1

Finding Rightmost Eigenvalues of Large Sparse 

Non-symmetric Parameterized Eigenvalue Problems 
 

Minghao Wu 
Applied Mathematics and Scientific Computation Program 

Department of Mathematics 
University of Maryland, College Park, MD 

mwu@math.umd.edu 
 

Advisor: Professor Howard Elman 
Department of Computer Sciences 

University of Maryland, College Park, MD 
elman@cs.umd.edu 

 
Introduction 

 
Consider the eigenvalue problem  

                               S SA x B xλ=                                 (1) 

where SA  and SB  are large sparse non-symmetric real N N×  matrices and 

S  is a set of parameters given by the underlying Partial Differential Equation 
(PDE). For simplicity, I will drop the subscript S  in the following discussion. 
People are interested in computing its rightmost eigenvalues (namely, eigenvalues 
with the largest real parts). The motivation lies in the determination of the 
stability of steady state solutions of non-linear systems of the form 

                    ( ) NNN RuRRfuf
dt
duB ∈→= ,:                  (2) 

with large N  and where u  represents a state variable (velocity, pressure, 
temperature, etc). B  is often called the mass matrix. Define the Jacabian matrix 

for the steady state *u  by ( )*/S SA f u u= ∂ ∂ , then *u  is stable if all the 

eigenvalues of (1) have negative real parts. Typically, f  arises from the spatial 

discretization of a PDE. Interesting applications of this kind occur in stability 
analyses in fluid mechanics, structural engineering and chemical reactions. The 
problem of finding rightmost eigenvalues also frequently occurs in Markov chain 
models, economic modeling, simulation of power systems and 
magnetohydrodynamics. When finite differences are used to discretize a PDE, 
then often B I=  and (1) is called a standard eigenproblem. If the equations are 
discretized by finite elements, then the mass matrix B I≠  and (1) is called a 
generalized eigenvalue problem. For problems arising from fluid mechanics, B  is 
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often singular. 
 
Major computational difficulties of this kind of problems are: (1) both A  and B  
are large and sparse, so the algorithm we use must be efficient in dealing with 
large systems; (2) in many applications, the rightmost eigenvalues are complex, so 
we must consider complex arithmetic; (3) B  is often singular, so it will give rise 
to spurious eigenvalues. 
 
Beside the numerical algorithm in computing the rightmost eigenvalues of (1), 
how the parameter set S  gives rise to the bifurcation phenomena, i.e, the steady 
state solution exchanges in stability, is also of people's interest. Examples are the 
Rayleigh number in nonlinear diffusion equation (Olmstead model) and the 
Damköhler number in the tubular reactor model. As the parameters vary, the 
rightmost eigenvalues might cross the imaginary axis, thus the steady state 
solution becomes unstable.  
 

Methodology 
 
Eigenvalue Solvers 
 
Since both A  and B  are large and sparse, the QZ-algorithm for the generalized 
problem and the QR-algorithm for the standard problem are not feasible. A more 

efficient approach is the solution of the standard eigenvalue problem Tx xθ= , 

which is a transformation of Ax Bxλ= , by iterative methods like Arnoldi's 
method, subspace iteration and Lanczos' method. In this project, I will use 
Arnoldi's algorithm and its variants, such as the Implicitly Restarted Arnoldi 
algorithm and B - orthogonal Arnoldi algorithm. Arnoldi algorithm is a type of 
eigensolver based on Krylov spaces.  
 
Matrix Transformation 
 
Matrix transformation is crucial in solving problems like (1). There are two 
important reasons for this approach. First, a practical reason is that iterative 
methods like Arnoldi's method and subspace iteration cannot solve generalized 
eigenvalue problems, which makes a transformation necessary. A second reason 
is of a numerical nature. It is well known that iterative eigenvalue solvers applied 
to A  quickly converge to the well-separated extreme eigenvalues of A . When 
A  arises from the spatial discretization of a PDE, then the rightmost eigenvalues 
of A  are in general not well separated. This implies slow convergence. The 
iterative method may converge to a wrong eigenvalue. Instead, one applies 
eigenvalue solvers to a transformation T  with the aim of transforming the 
rightmost eigenvalues of A  to well-separated extremal eigenvalues of T , which 
are easily found by the eigenvalue solvers we consider. I will explore three kinds of 
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matix transformation: Shift-invert transformation, Cayley transformation and 
Chebyshev polynomial transformation. 
 
Discretization of PDEs 
 
In this project, finite difference and finite element method will be used to discretize 
the PDEs. They are the most commonly used methods in the discretization of 
PDEs. 
 
Complex Arithmetic 
 
Since the rightmost eigenvalues are complex in many real-world problems, 
complex arithmetic is considered in this project. 
 

Implementation 
 

All algorithms of this project will be coded in Matlab. Two software packages that 
are available are: IFISS ("Incompressible Fluid Iterative Solution Software") and 
the Implicitly Restarted Arnoldi Algorithm package written by Fei Xue. 
Computation can be done on laptops.  
 

Testing and Validation 
 

I will apply the algorithm to several test problems that have been solved and try to 
produce the same results as in the literature. There are three stages of testing: 
 
Stage 1: Test the codes for standard Arnoldi algorithm, Shift-invert 
transformation and Cayley transformation 
 
I plan to solve two test problems in this stage: 
1. Olmstead model (nonlinear diffusion equation) 
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with certain boundary conditions. 
2. Tubular reactor model 
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with certain boundary conditions.  
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Stage 2: Test the codes for Implicitly Restarted Arnoldi algorithm and B - 
orthogonal Arnoldi algorithm 
 
In this stage, I will first use Matlab random number generator to generate 
matrices of the following structure: 
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This kind of eigenvalue problem appears in the stability analysis of steady state 
solutions of Stokes and Navier-Stokes equations for incompressible flow. Since 
B  is singular, standard Arnoldi algorithm will produce spurious eigenvalues. But 
Implicitly Restarted Arnoldi should be able to solve this problem. 
 
Stage 3: Test the code on the eigenvalue problem arises from the mixed finite 
element discretization of real Navier-Stokes equations in literature.  
 
The finite element discretization of this problem has the matrix structure in stage 
2. 
 

Project Schedule 
 

Before November:  
 
   1.  solve the first test problem (already finished) 
   2.  explore the effect of Rayleigh number in the problem 
 
November: 
 

1. solve the second test problem 
2. explore the effect of Damköhler number in the problem 

 
December: 
 

1. modify and test the Implicitly Restarted Arnoldi Algorithm 
2. code and test B - orthogonal Arnoldi algorithm 
3. finish midterm report  
4. give midterm presentation 

 
January and February: 
 

1. discretize the two-dimentional double diffusive convection equation using 
Mixed Finite Element method 

2. modify the code for the Mixed Finite Element method in IFISS 
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March: 
 
    Solve the eigenvalue problem arises from the Mixed Finite Element 

discretization of the two-dimentional double diffusive convection equation 
 

April: 
 

1. explore the effect of the parameters in the third model 
2. write the final report  

 
May: 
 

1. write the final report 
2. give final presentataion 

 
 
 
 
 

 
 
 
 


